1,268 research outputs found

    Biomimetic solution-based coatings for functional applications

    Get PDF

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    The energy and stability of D-term strings

    Get PDF
    Cosmic strings derived from string theory, supergravity or any theory of choice should be stable if we hope to observe them. In this paper we consider D-term strings in D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. We show that the positive deficit angle supersymmetric D-term string is non-perturbatively stable by using standard Witten-Nester techniques to prove a positive energy theorem. Particular attention is paid to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. As an interesting aside, we show that the Witten-Nester charge calculates the total gravitational energy of the D-term string without the need for a cut-off, which may not have been expected.Comment: 18 pages. v2: minor changes and references adde

    Dirac equation for the supermembrane in a background with fluxes from a component description of the D=11 supergravity-supermembrane interacting system

    Full text link
    We present a simple derivation of the 'Dirac' equation for the supermembrane fermionic field in a D=11 supergravity background with fluxes by using a complete but gauge-fixed description of the supergravity-supermembrane interacting system previously developed. We also discuss the contributions linear in the supermembrane fermions -the Goldstone fields for the local supersymmetry spontaneously broken by the superbrane- to the field equations of the supergravity-supermembrane interacting system. The approach could also be applied to more complicated dynamical systems such as those involving the M5-brane and the D=10 Dirichlet branes.Comment: 1+22 pages, JHEP style. v2: cosmetic changes and references added to conform to the JHEP published versio

    Flavor brane on the baryonic branch of moduli space

    Full text link
    We study an extra flavor in the cascading SU((k+1)M)xSU(k M) gauge theory by adding probe D7-brane to the geometry. By finding a solution to the kappa-symmetry equation we establish that the D7-brane is mutually supersymmetric with the background everywhere on the baryonic branch of moduli space. We also discuss possible applications of this result.Comment: 15 pages; v2 typo corrected, references adde

    D-branes on AdS flux compactifications

    Full text link
    We study D-branes in N=1 flux compactifications to AdS_4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure and corrected typo in (6.21b

    Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999 – an application to the Italian Seas

    Get PDF
    The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the <i>r-largest annual maxima</i> and the <i>peak-over-threshold</i>. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The <i>r-largest annual maxima</i> method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century

    Wilson Loop, Regge Trajectory and Hadron Masses in a Yang-Mills Theory from Semiclassical Strings

    Full text link
    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luescher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models.Comment: 52 pages, latex 3 times, v3: references adde

    Open String Wavefunctions in Warped Compactifications

    Full text link
    We analyze the wavefunctions for open strings in warped compactifications, and compute the warped Kahler potential for the light modes of a probe D-brane. This analysis not only applies to the dynamics of D-branes in warped backgrounds, but also allows to deduce warping corrections to the closed string Kahler metrics via their couplings to open strings. We consider in particular the spectrum of D7-branes in warped Calabi-Yau orientifolds, which provide a string theory realizations of the Randall-Sundrum scenario. We find that certain background fluxes, necessary in the presence of warping, couple to the fermionic wavefunctions and qualitatively change their behavior. This modified dependence of the wavefunctions are needed for consistency with supersymmetry, though it is present in non-supersymmetric vacua as well. We discuss the deviations of our setup from the RS scenario and, as an application of our results, compute the warping corrections to Yukawa couplings in a simple model. Our analysis is performed both with and without the presence of D-brane world-volume flux, as well as for the case of backgrounds with varying dilaton.Comment: 52 pages, refs. added, minor correction
    • …
    corecore